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a b s t r a c t

Metabolomics based on liquid chromatography-mass spectrometry (LC-MS) is a powerful tool for
studying dynamic responses of biological systems to different physiological or pathological conditions.
Differences in the instrumental response within and between batches introduce unwanted and
uncontrolled data variation that should be removed to extract useful information. This work exploits a
recently developed method for the identification of batch effects in high throughput genomic data based
on the calculation of a δ statistic through principal component analysis (PCA) and guided PCA. Its
applicability to LC-MS metabolomic data was tested on two real examples. The first example involved
the repeated analysis of 42 plasma samples and 6 blanks in three independent batches, and the second
data set involved the analysis of 101 plasma and 18 blank samples in a single batch with a total runtime
of 50 h. The first and second data set were used to evaluate between and within-batch effects using the δ
statistic, respectively. Results obtained showed the usefulness of using the δ statistic together with other
approaches such as summary statistics of peak intensity distributions, PCA scores plots or the monitoring
of IS peak intensities, to detect and identify instrumental instabilities in LC-MS.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Metabolomics is the comprehensive and simultaneous deter-
mination of metabolite concentrations from the metabolome and
their changes over time as a consequence of stimuli. Considering
the outstanding complexity of the metabolome, the use of ultra-
performance liquid chromatography - mass spectrometry (UPLC-
MS) is gaining importance in metabolomics due to its increased
sensitivity and high throughput as compared to other techniques such
as nuclear magnetic resonance (NMR) or gas chromatography-MS
(GC–MS) [1].

UPLC-MS analysis in metabolomic studies are frequently per-
formed in batches if they are run over long periods of time, involve

a high number of samples and also if the study is carried out
across different laboratories or instruments. Therefore, as in other
high-throughput techniques used for example to assay gene or
protein expressions, experimental data might include additional
unwanted non-biological variation derived from laboratory or
instrumental conditions [2–4]. Even under repeatability condi-
tions, instrumental variation in UPLC-MS might arise from a
number of sources including drifts in sensitivity, ionization effi-
ciency, and gradual changes in column performance over short
analysis periods (tens of injections) [5]. This type of batch effects
leads to increased variability and decreased power to detect
biologically meaningful responses [3]. Consequently, batch effects
have to be reliably detected and eventually removed to avoid
impact on repeatability and reproducibility of results across
independent studies.

Normalization in metabolomics is used to remove the systema-
tic variation unrelated to the biological difference among samples.
Data normalization strategies to overcome batch effects can be
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clustered in two groups [6]: (i) statistical models based on scaling
factors calculated using complete data sets, such as normalization
by 1-norm [7], median value [8] or quantile [9], and (ii) normal-
ization using spiked internal standards (IS) with similar physico-
chemical properties as the analytes of interest (IS-norm) [10].

Detecting the presence of batch effects as well as the assess-
ment of the performance of normalization methods can be
accomplished in a number of ways. A simple method is the use
of summary statistics of peak intensity distributions of pooled
samples used as quality controls (QCs), such as the average
Pearson correlation coefficients for all peaks between any two
QC samples [11] or the distribution of RSD% in QCs. Alternatively,
the visual inspection of principal component analysis (PCA) scores
plots is a common practice [11]. However, PCA is an unsupervised
method and batch effects can easily remain undetected if it they
are not the largest source of variability in the data. Recently, Reese
et al. [12] proposed a δ statistic based on PCA and guided PCA
(gPCA) for the statistical evaluation of batch effects in multivariate
data sets and demonstrated its applicability for high throughput
genomic data using both, real and simulated data. In this study, we
evaluate the usefulness of the δ statistic for the identification of
between- and within-batch effects in metabolomic UPLC-MS
datasets. To verify its applicability, the method is tested on real
data. The first data set used was acquired in the frame of a study
aiming at the identification of plasma biomarkers for the diagnosis
of gastric cancer occurring via the sequence of molecular events
known as Correa's Cascade (i.e. acute gastritis4chronic gastri-
tis4precancerous lesions4gastric cancer). This data set was
obtained from the repeated analysis of 42 plasma samples and
6 blanks in three independent batches. The second data set
employed for evaluating the use of the δ statistic was obtained
from a study of the effect of hypoxia and resuscitation in a piglet
model involving the analysis of 101 plasma and 18 blank samples
in a single batch with a total runtime of 50 h. The first and second
data set were used to evaluate between and within-batch effects
using the δ statistic, respectively. Results obtained showed the
usefulness of the δ statistic to determine whether a between-batch
effect exists in UPLC-MS data sets and also to detect and identify
instrumental instabilities during a single batch measurement.

2. Batch effect estimation using PCA and guided PCA

Principal component analysis (PCA) is a widely used unsuper-
vised method to detect batch effects in metabolomics. However, if
batch effects are not the largest source of variability in the data,
these effects can be easily overlooked. Recently, Reese et al. [12]
developed a δ statistic to detect and quantify the significance of
batch effects, based on PCA and an extension of PCA, namely
guided PCA (gPCA). For a detailed description of the method see
reference [12]. Nevertheless, it is worth paying attention to the
basics of the method.

The δ statistic is defined as the ratio of the variance of the first
principal component calculated using guided-PCA to the variance
of the first principal component calculated from PCA:

δ¼ varðXVg1Þ
varðXVu1Þ

where X (n�p) is the experimental data set with n samples and p
variables, Vu1(p�p) is the matrix of right singular vectors calcu-
lated by singular value decomposition (SVD) of matrix X from
‘unguided’ PCA and Vg1(b� b) is the matrix of right singular
vectors calculated by SVD of the product (Y'X) from gPCA. Here,
the matrix Y (n� b) is an indicator matrix with elements yik ¼ 1 if
sample i is in batch k, otherwise yik ¼ 0. As shown in [12], large
singular values in gPCA indicate that the batch effect is important

for the corresponding principal component and so, high values of
δ (i.e. close to 1) are indicative of a batch effect. The statistical
significance of the batch effect can be estimated by a permutation
test in which the rows of the Y matrix are randomly permuted M
times (in this work, M¼1000). For each permutation, a δ statistic
is calculated (δp). Then, the δ value calculated using the real batch
ordering is compared to the reference distribution of δperm values
and a one-sided p-value is estimated as the proportion of times
that the δ statistic is in the extreme tail of the reference null
distribution.

δ¼∑M
m ¼ 1ðδ̂o δ̂pÞ

M

This procedure was slightly modified for the evaluation of changes
in the instrument performance within a single batch. In this case,
the batch integrated by N samples is artificially split into k smaller
subsets (k-fold) of N/k contiguous samples and a δ statistic, based
on local PCA and gPCA models of sample subsets, is calculated.

Data analysis was performed using MATLAB 2012b (The Mat-
whorks, Natick, USA), the PLS Toolbox 7.0 (Eigenvector Res.Inc.,
Wenatchee, USA) and in house written MATLAB scripts. Data
(.netCDF,.mzXML and.mat files) and MATLAB scripts included in
this work are available from the authors. The calculation of δ was
performed according to Reese et al. [12] and the gPCA R package
available via CRAN (http://cran.r-project.org/web/packages/gPCA/).

3. Results and discussion

3.1. Between-batch effect evaluation

Collection, pretreatment, storage and analysis of plasma sam-
ples of Data set I are described in the Supplementary Material.
Briefly, data set I involved the analysis of a single set of plasma
samples collected from one individual on the same day to mini-
mize biological variation and facilitate the batch effect detection.
After plasma collection, the samples were aliquoted and kept at
�80 1C for 1, 3 and 7 days until analysis by UPLC-ESI(þ)–TOF-MS
in batches 1, 2 and 3, respectively. The sample ordering between
batches was replicated to facilitate the identification of instru-
mental batch effects. Between batches, the ESI/MS detector inlet
interface was cleaned and the MS was calibrated.

First, the three batches were initially compared using: (i) the
number of features detected; (ii) the distribution of RSD% values in
QC samples and the number of peaks with RSDr15%; (iii) the
absolute values and stability of the intensities of the internal
standards (ISs), and (iv) the presence of sample clustering or
trends in scores plots from a PCA model calculated using the
whole sample set.

After peak detection and alignment of the UPLC-MS data a total
of 4294, 4534 and 3815 features were detected in batches 1, 2 and
3, respectively. As these figures were inflated by contaminants,
non-relevant features with mean intensity values in blanks higher
than 10% of the mean value in samples were removed, leaving a
total of 2600, 2745 and 2582 in batches 1, 2 and 3, respectively.
Then, variables were grouped among batches using the ‘nearest’
method with the following parameters, mzVsRT¼1 and RT and
m/z tolerances of 5 s and 2 mDa, respectively. The number of
common features was comparable among batches (see Fig. 1A).
Fig. 1B also showed stable and comparable intensity profiles for
the ISs PheAla-D5, LeuEnk and Reserpine in the three batches.

The set of 1186 variables detected in the three batches was
retained for further analysis. Highly comparable RSD% distribu-
tions and percentages of variables with RSDr15% (66.6, 60.0 and
60.7% for batches 1, 2 and 3, respectively) (see Fig. 1C). In spite of
that, an exploratory analysis by PCA revealed a clear clustering as
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shown in Fig. 2A. The normalization of the peak intensities by 1-
norm resulted only in slight changes in the PC scores clustering
(see Fig. 2C). By using IS-norm, samples from batches 1 and 2,

measured on days 1 and 3, were tightly clustered and clearly
separated along PC1 from a second cluster of batch 3 samples,
measured on day 7 (see Fig. 2D). On the contrary, Fig. 2B shows

Fig. 1. Initial analysis of batch effects for data set I. (A) Venn diagram showing the number of variables detected; (B) intensities of the internal standards PheAla-D5, LeuEnk and
Reserpine (bottom) in batches 1, 2 and 3 of data set I. Yellow, white and green circles indicate plasma, blank and QC samples, respectively; (C) Distribution of features and RSD%
in QC samples in batches 1, 2 and 3 of data set I. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that prior batch mean centering successfully removed the batch
clustering.

Results from visual inspection of the PCA scores plot were in
good agreement with those found using the δ statistic (see Fig. 3).
Whilst a statistically significant batch effect was found using raw
data (δ¼0.994, p-valueo0.001), mean centering of each batch
prior to PCA decreased the δ value and their statistical significance
(δ¼0.006, p-value40.05).

Then, a pair-wise analysis among the three batches was carried
out. The δ statistic between batches 1 and 2 calculated using raw
data (δ¼0.957) indicated a somewhat low batch effect difficult to
identify from the PCA scores plot in Fig. 2A. After IS-norm, the
δ¼0.669 (p-value40.05) obtained between batches 1 and 2 was
also in good agreement with the observed clustering in Fig. 2D,
where samples from batches 1 and 2 were clearly separated from
batch 3 samples. Results showed that the use of the δ statistic is
useful to quantify the statistical significance of batch effects in
UPLC-MS.

3.2. Within-batch effect evaluation

Data set II comprised a set of plasma samples (n¼85), QCs
(n¼16) and blanks (n¼18), collected within a study of the effect of
hypoxia and resucistation in a piglet model. This data set was

selected to evaluate the use of δ to detect instrumental effects
within a single batch. Detailed description of the collection,
pretreatment, storage and analysis procedures followed for the
analysis of samples are included in the Supplementary Material.
After peak detection and alignment, a total of 471 variables were
retained for further analysis.

Signal stability was initially analyzed using the intensities of
the ISs PheAla-D5 and Methionine-D3 and PCA scores plots to
detect trends and sample clustering within the batch. The plot of
the IS intensities showed a decreasing trend and allowed the
identification of a set of 11 outlying samples that were removed
from the data set (see Fig. 4). The PC1, PC2 and PC3 scores plot of
the PCA obtained using pareto scaling as data pretreatment, is
shown in Fig. 5(A). The decreasing trend over time observed for
PC1 and PC2 scores plots was indicative of an instrumental effect
that was analyzed using the δ statistic. Accordingly, the data set
was split into k sample subsets (k¼{3, 4, 6, 9}) and each subset
was then considered as an independent (sub)batch. From results
summarized in Table 1, the statistical significance of the batch
effect in raw data was confirmed (δ p-value⪡0.05) for all the
considered k-fold splits.

An evaluation of batch normalization methods was out of the
scope of this work. However, three common methods were
applied to test the usefulness of the δ statistic to compare their
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Fig. 2. PCA scores plots obtained using raw (A), mean centered (B) 1-norm (C) and IS normalized (D) data set I.
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performance. The first one (1-norm) divides all the peak inten-
sities by the sum of all intensities in the sample. The second (IS-
norm_A) and the third (IS-norm_B) method are based on the use
of the intensities of the ISs. In IS-norm_A, Methionine-D3

(RT¼155 s) and Phenylalanine-D5 (RT¼295 s) were used to nor-
malize variables eluting at RT⪡225 s and RT4225 s, respectively.
In IS-norm_B, variables with RTo120 s were excluded from
normalization. Fig. 5 (B–D) shows the variation of the PC1, PC2

and PC3 scores obtained by PCA after data normalization. While it
appears that the decreasing trend in the scores was removed in a
great extent using all three normalization methods, it was difficult
to conclude which one provided a better effect removal. However,
from results summarized in Table 1 using the δ statistic, it can be
seen that although normalization using both, 1-norm and IS-
norm_A partially removed the effect, as shown by the decrease
in the δ values, IS-norm_B normalization was the only approach

Fig. 3. Venn diagrams showing the δ values calculated for data set I using raw data and after using mean centering, 1-norm and IS-norm as data pretreatment.
Note: nnindicates δ p-valueso0.001.
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providing a statistically significant removal of the effect (δ p-
value⪢0.05). The use of IS-norm assumes that variance exhibited
by the IS is caused exclusively by systematic error [13]. However,
ion suppression might be very different between front and late
eluting peaks and so, the use of Methionine-D3 for normalization
of peaks eluting at RTo120 s may introduce bias. The relation
between the RT and the value of the δ statistic was evaluated by
calculating the δ statistic in subsets of variables clustered in RT

windows of 100 s. Results depicted in Fig. 6 show that 1-norm and
IS-norm_A increased the value of the δ statistic in the RT window
between 50 s and 150 s. Moreover, IS-norm_B performed better in
the 150–250 s intervals, where the ISs elute supporting the
conclusion that the poor results obtained using IS-norm_A were
due to an improper selection of the IS used for normalization. This
shows that the δ statistic can also be used to gain further insights
into the variables responsible for the local batch effect and so, it
could be used to optimize the normalization conditions.

4. Conclusions

Batch effects among UPLC-MS metabolomic data sets are very
frequent and, if they are not recognized or if they are not properly
removed, they can make it almost impossible to separate batch
and biologically relevant effects. Results found on real data
showed that the δ statistic can be used to estimate the statistical
significance of batch effects and to compare the performance of
normalization methods in LC-MS metabolomic data sets. The
analysis in RT windows and smaller sample subsets in the case
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Table 1
δ values calculated for data sets II before and after data normalization and using
different k-fold splits of the data set.

k-fold

Normalization 3 4 6 9

Raw data 0.959 (0.001) 0.975 (0.001) 0.969 (0.002) 0.979 (0.002)
1-norm 0.875 (0.015) 0.938 (0.001) 0.937 (0.013) 0.961 (0.006)
IS- normA 0.781 (0.038) 0.866 (0.003) 0.856 (0.031) 0.905 (0.019)
IS-normB 0.574 (0.39) 0.726 (0.36) 0.669 (0.68) 0.824 (0.57)
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of single batch analysis can provide a better insight into the source
of batch effects. Although the power of the approach for detecting
batch effects depends on the ratio of variables affected and the size
of the effect, this statistic can be a useful tool to be used together
with other approaches such as summary statistics of peak inten-
sity distributions, PCA scores plots and the monitoring of IS peak
intensities.
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